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The rapid advancement of artificial intelligence
has increased the sophistication and misuse of
deepfake technologies, posing significant risks to
digital trust and cybersecurity. As cyber threats
evolve, traditional security systems struggle to
address manipulated visual media used in fraud,
misinformation, and identity abuse. This paper
Shniffer;

infrastructure designed for deepfake detection

introduces a forensic verification
and digital evidence integrity. Sniffer integrates
cryptographic  hashing, structural similarity

analysis, pixel-level —anomaly localization,
severity scoring, and structured chain-of-custody
logging to generate evidence-grade forensic
reports. The system enables original image
registration, comparison with suspected media,
and automated documentation suitable for
investigative use. By combining Al-assisted
analysis  with  lifecycle-controlled  case
management, Sniffer aims to bridge the gap
deepfake research and

The

between detection
practical digital forensic application.
proposed framework emphasizes accountability,
to

traceability, and structured verification

restore confidence in digital media ecosystems.
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I. Introduction to Cyber-Security

In the rapidly evolving landscape of computer and

information  technology, cybersecurity has
emerged as a critical area of focus. With the
exponential growth of digital connectivity, the
volume and sophistication of cyber threats have
surged, making cybersecurity an indispensable
element of modern technology infrastructure.
Cybersecurity involves protecting digital systems,
networks, and sensitive data from malicious
unauthorized access,

attacks, and potential

exploitation by cybercriminals.

As technology continues to advance, the digital
world has become an integral part of daily life.
Individuals, businesses, and governments rely on
digital services for communication, financial
transactions, healthcare, education, and
commerce. However, this dependence on digital
platforms has also made cybersecurity threats
more prevalent, exposing users to risks such as
data breaches, identity theft, and financial fraud.
The increased connectivity brought by IoT
devices, cloud computing, and artificial
intelligence has introduced new vulnerabilities,
making it imperative to adopt comprehensive

security measures.

1.1. Cyber Attack:

A cyberattack is a deliberate attempt to steal, alter,

disable, or destroy data by gaining unauthorized
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access to digital systems. Threat actors, such as
hackers, cybercriminals, and nation-states, use
tactics like malware, ransomware, phishing, and
password theft to exploit system vulnerabilities.
Their motives range from financial gain and
espionage to sabotage and political agendas.
Cyberattacks can severely disrupt businesses,
with the average data breach costing
approximately USD 4.35 million, accounting for
detection, response, downtime, and reputational
damage. These attacks target individuals,
businesses, and governments, seeking to access
sensitive information, such as intellectual
property, customer data, and financial details,
the victim's

causing long-term harm to

operations and brand.

1.2. Types of Cyber Attacks:

Cyber attacks come in various forms, targeting
individuals, organizations, and even
governments. They are often carried out to steal
sensitive data, disrupt services, or compromise

systems. Below are some of the most common

types of cyber-attacks:
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Fig 1.1 Types of Cyber Attacks

1.3 Common Attacking Techniques:
i Brute-forcing: Attackers systematically

try all possible passwords or encryption

keys using automated tools to gain

il

il

iv.
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unauthorized access. This method is time-

consuming and  resource-intensive,

especially against complex passwords.

Phishing: Attackers deceive individuals
into revealing sensitive information like
usernames and passwords by creating fake
emails or websites that mimic legitimate
ones. It exploits human trust and is a
common attack vector.

Ransomware: Malware that encrypts a
victim’s data and demands a ransom for
decryption. It disrupts individuals and
organizations, and payment doesn’t
guarantee data recovery. Examples include
WannaCry and Ryuk.

Social Engineering: Manipulates people
into disclosing confidential informationby
exploiting psychological tricks, such as
impersonating trusted sources.

Deepfake: Uses Al to create realistic but
fake audio, video, or images for malicious
like theft and

purposes identity

disinformation, presenting a growing

cybersecurity threat.

II.  Recent Trends in CyberSecurity

The Growing CyberThreat landscapeAs

technology advances, cybercriminals have developed

increasingly sophisticated tactics, leading to a rise in

cyberattacks. Ransomware attacks, in particular, have

surged, with malicious actors encrypting victims’ files

and demanding ransom payments for decryption keys.

These attacks target organizations of all sizes,

including critical infrastructure sectors like healthcare,

transportation, and energy. The financial impact of

such breaches is significant, with the average cost of a

ransomware attack exceeding USD 4 million. This
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alarming trend has compelled organizations to
enhance their cybersecurity measures and invest in
advanced technologies to defend against evolving

threats.

2. Zero Trust Security Model

In response to the changing threat landscape, one
of the most significant trends in cybersecurity is
the adoption of the Zero Trust security model.
Unlike traditional security approaches that rely
on perimeter defenses, Zero Trust operates under
the principle that no entity—whether inside or
outside the network—is inherently trustworthy.
This model emphasizes continuous verification
of user identities, device integrity, and access
permissions, thereby minimizing the risk of
unauthorized access and data breaches. By
adopting a Zero Trust approach, organizations
can better secure their networks against
sophisticated threats, as every request for access
is treated as though it originates from an

untrusted source, requiring thorough verification

before granting permissions.

III. Understanding Deepfake Technology

1. What are Deepfakes?:
Deepfake technology utilizes advanced machine
learning  techniques, particularly  generative
adversarial networks (GANSs), to create realistic
audio and visual content that can manipulate reality.
By training algorithms on extensive datasets,
deepfakes can swap faces, alter voices, and fabricate
entire scenes, resulting in media that appears
genuine yet is entirely fabricated. The implications
of  deepfake technology extend beyond
entertainment, as its potential for misuse raises

significant ethical and security concerns

2. Application of Deepfake Technology :

Deepfake technology has found applications
across various fields, ranging from entertainment
to education and beyond. In film industry, for
example, filmmakers use deepfake technology to
enhance special effects, allowing for greater
creative flexibility in storytelling. Additionally,
deepfakes can be employed in virtual reality
environments to create immersive training
simulations, providing learners with realistic
scenarios to practice their skills safely.

3. How to identify Deepfake Images:

3.1 Blurring or Artifacts: Deepfake videos
often show slight blurring or distortion around the
face, especially near the edges where the fake face
is blended with the original.

3.2 Unnatural Eye Movements: The eyes in
deepfakes may blink awkwardly or not at all, as
early deepfake algorithms struggled with eye
movements.

3.3 Mismatched Lighting: In many deepfakes,
the lighting on the face may not match the rest of

the scene, with inconsistent shadows or highlights
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Fig 3.1. Difference between real and deepfake Image

IV. Our proposed Technology - Sniffer

4.1 Overview
Sniffer is designed as a forensic verification

infrastructure rather than a simple detection tool.
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The system enables structured registration of 2. Structural Similarity Index (SSIM)
original media, comparison of suspected content, computation
and generation of legally structured verification 3. Pixel-level difference mapping
reports. It focuses on evidence integrity, lifecycle 4. Region segmentation for anomaly localization
management, and tamper localization If divergence exceeds threshold values, the
The architecture consists of: system:
e Flags manipulated regions

i. Image Registration Module o Generates a tamper localization map
ii. Verification & Similarity Engine e Assigns a severity score
iii. Tamper Localization Engine This enables detection of:

e Face swaps

iv. Severity Scoring Model « Region blending

v. Case Lifecycle Management « Synthetic overlays

vi. Chain-of-Custody Logging » Background manipulation

vii. Evidence Report Generation. 4.4 Severity Rating System

4.2 Image Hashing for Digital Integrity Sniffer categorizes manipulation intensity using a

tructured it le:
Sniffer uses SHA-256 cryptographic hashing to SHuCHred severly scake

generate a unique fingerprint for every registered 1+ 1-3 (Low Severity): Minor modifications
(brightness adjustments, cropping).

image. Any modification, even at a single pixel

ii. 4-7 (Medium Severity): Moderate
alterations (face blending, background
modifications).

level, results in a completely different hash value

This ensures:

) . . . iii. 8-10 (High Severity): Major
i. Detection of direct file alteration manipulations (deepfake replacements,
synthetic elements).
ii. Integrity verification
4.5 Case Lifecycle & Forensic Integrity
iii. Cryptographic evidence traceability Each verification is treated as a structured

Hash values are stored securely within the case forensic case with defined states:

record to ensure authenticity validation. « RECEIVED
o« PROCESSING
4.3 Similarity-Based Tamper Detection
In addition to cryptographic hashing, Sniffer  ° COMPLETED
o FAILED

performs structural similarity analysis between:

i. Registered Original Image Once analysis is completed, the case is locked to

ii. Suspected Manipulated Image preserve integrity.

Post-lock, evidence fields cannot be modified.

The verification pipeline includes: 4.6 Chain of Custody Logging

1. Feature Extraction To ensure accountability, Sniffer maintains an



immutable event log including:

i. IMAGE UPLOADED

ii. ANALYSIS STARTED
1ii.ANALYSIS COMPLETED
iv.REPORT GENERATED

v. CASE LOCKED

Each event includes timestamp and metadata,
forming a traceable audit trail suitable for

investigative workflows.

4.7 Forensic Report Generation
Sniffer generates structured PDF reports
containing:

e CaselD

o Upload timestamp

o SHA-256 hash

o Image metadata (dimensions, EXIF

presence)

o Severity score

o Classification

o Chain of custody log

o Legal disclaimer
This allows the report to be attached to formal
complaints or investigative submissions.

V. How deep faked Content is Undetected?

Detecting deepfakes is increasingly challenging due
to the advanced technology used to create them.
Deepfake like
Adversarial Networks (GANs), produce highly

generation  tools, Generative
realistic content that mimics minute details, making
it difficult for detection systems to identify anamoly.
Current machine learning models, though widely
used, lack the accuracy to reliably spot deepfakes due
to limitations like incomplete datasets and the

immense time and resources required for training. As

deepfake creation tools evolve rapidly, traditional
detection models struggle to keep up, often failing to

generalize across new and varied deepfakes.
VI. Prototype Results and System Evaluation

The current implementation of Sniffer
demonstrates functional verification capabilities
across the following metrics

i. Integrity Verification

Cryptographic hash mismatch detection
reliably identifies direct file alterations.

ii. Structural Similarity Detection
Similarity-based comparison successfully
highlights modified regions between

registered and suspected images.

iii. Processing Performance
The verification pipeline processes images
within 2-5 seconds under prototype testing
conditions.

iv. Evidence Report Generation
Forensic reports are generated instantly upon
case structured

completion, providing

documentation suitable for investigative use.

VII. Challenges and Limitations
I. Computational Complexity:

Blockchain Similarity analysis and pixel-level

comparison  require  processing  resources,

particularly for high-resolution images.

Optimization techniques are required for large-

scale deployment. expenses.

II. Adversarial Manipulation:

Advanced attackers may attempt minimal
perturbations or noise injection techniques to
evade similarity thresholds. Continuous model
refinement is necessary.

III. Dataset Generalization



Deepfake detection models may struggle when between digital media analysis and investigative

exposed to unseen manipulation techniques. application. Future work includes large-scale

Regular retraining and validation against updated benchmarking,

datasets is

VIII. Future Enhancements

i. Image Video Deepfake Detection
Expanding Sniffer AI’s capabilities to
detect video manipulations using frame
hashing and Al-driven analysis.

ii. Al-Enhanced Hash Verification
Integrating deep learning for pattern
recognition. Detecting manipulated areas
within an image.

ili. Integration with Law Enforcement
Assisting forensic investigators in verifying
digital evidence.

IX. Ethical and Legal Considerations

Data Privacy Concerns

Images are not stored—only hashes are kept
for security.

Ensures user privacy compliance (GDPR,
CCPA).

Preventing Misuse

Blockchain preventsunauthorized
modifications, but ethical use must be monitored..

X. Conclusion

The rapid evolution of deepfake technologies
demands a shift from purely detection-based
systems to structured forensic verification

infrastructures. Sniffer presents a practical
framework for deepfake integrity validation
through  cryptographic  hashing, structural
similarity analysis, tamper localization, lifecycle

control, and chain-of-custody logging.

By combining Al-assisted detection with

evidence-grade documentation and integrity

preservation mechanisms, Sniffer bridges the gap

1.

video  deepfake  detection

essential.. expansion, and institutional deployment pilots.
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