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The rapid advancement of artificial intelligence 

has increased the sophistication and misuse of 

deepfake technologies, posing significant risks to 

digital trust and cybersecurity. As cyber threats 

evolve, traditional security systems struggle to 

address manipulated visual media used in fraud, 

misinformation, and identity abuse. This paper 

introduces Sniffer; a forensic verification 

infrastructure designed for deepfake detection 

and digital evidence integrity. Sniffer integrates 

cryptographic hashing, structural similarity 

analysis, pixel-level anomaly localization, 

severity scoring, and structured chain-of-custody 

logging to generate evidence-grade forensic 

reports. The system enables original image 

registration, comparison with suspected media, 

and automated documentation suitable for 

investigative use. By combining AI-assisted 

analysis with lifecycle-controlled case 

management, Sniffer aims to bridge the gap 

between deepfake detection research and 

practical digital forensic application. The 

proposed framework emphasizes accountability, 

traceability, and structured verification to 

restore confidence in digital media ecosystems.  
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I. Introduction to Cyber-Security 

In the rapidly evolving landscape of computer and 

information technology, cybersecurity has 

emerged as a critical area of focus. With the 

exponential growth of digital connectivity, the 

volume and sophistication of cyber threats have 

surged, making cybersecurity an indispensable 

element of modern technology infrastructure. 

Cybersecurity involves protecting digital systems, 

networks, and sensitive data from malicious 

attacks, unauthorized access, and potential 

exploitation by cybercriminals. 

As technology continues to advance, the digital 

world has become an integral part of daily life. 

Individuals, businesses, and governments rely on 

digital services for communication, financial 

transactions, healthcare, education, and 

commerce. However, this dependence on digital 

platforms has also made cybersecurity threats 

more prevalent, exposing users to risks such as 

data breaches, identity theft, and financial fraud. 

The increased connectivity brought by IoT 

devices, cloud computing, and artificial 

intelligence has introduced new vulnerabilities, 

making it imperative to adopt comprehensive 

security measures. 

1.1. Cyber Attack: 

A cyberattack is a deliberate attempt to steal, alter, 

disable, or destroy data by gaining unauthorized 

mailto:zaidrakhange-inft@atharvacoe.ac.in
mailto:vaibhavrathod-inft@atharvacoe.ac.in


2 
 

access to digital systems. Threat actors, such as 

hackers, cybercriminals, and nation-states, use 

tactics like malware, ransomware, phishing, and 

password theft to exploit system vulnerabilities. 

Their motives range from financial gain and 

espionage to sabotage and political agendas. 

Cyberattacks can severely disrupt businesses, 

with the average data breach costing 

approximately USD 4.35 million, accounting for 

detection, response, downtime, and reputational 

damage. These attacks target individuals, 

businesses, and governments, seeking to access 

sensitive information, such as intellectual 

property, customer data, and financial details, 

causing long-term harm to the victim's 

operations and brand. 

1.2. Types of Cyber Attacks: 

Cyber attacks come in various forms, targeting 

individuals, organizations, and even 

governments. They are often carried out to steal 

sensitive data, disrupt services, or compromise 

systems. Below are some of the most common 

types of cyber-attacks: 

 

 

 

 

 

 

 

 

Fig 1.1 Types of Cyber Attacks 

1.3 Common Attacking Techniques: 

i. Brute-forcing: Attackers systematically 

try all possible passwords or encryption 

keys using automated tools to gain 

unauthorized access. This method is time- 

consuming and resource-intensive, 

especially against complex passwords. 

ii.  Phishing: Attackers deceive individuals 

into revealing sensitive information like 

usernames and passwords by creating fake 

emails or websites that mimic legitimate 

ones. It exploits human trust and is a 

common attack vector. 

iii. Ransomware: Malware that encrypts a 

victim’s data and demands a ransom for 

decryption. It disrupts individuals and 

organizations, and payment doesn’t 

guarantee data recovery. Examples include 

WannaCry and Ryuk. 

iv. Social Engineering: Manipulates people 

into disclosing confidential information by 

exploiting psychological tricks, such as 

impersonating trusted sources. 

v. Deepfake: Uses AI to create realistic but 

fake audio, video, or images for malicious 

purposes like identity theft and 

disinformation, presenting a growing 

cybersecurity threat. 

 

II. Recent Trends in CyberSecurity 

1. The Growing CyberThreat landscapeAs 

technology advances, cybercriminals have developed 

increasingly sophisticated tactics, leading to a rise in 

cyberattacks. Ransomware attacks, in particular, have 

surged, with malicious actors encrypting victims’ files 

and demanding ransom payments for decryption keys. 

These attacks target organizations of all sizes, 

including critical infrastructure sectors like healthcare, 

transportation, and energy. The financial impact of 

such breaches is significant, with the average cost of a 

ransomware attack exceeding USD 4 million. This 



3 
 

alarming trend has compelled organizations to 

enhance their cybersecurity measures and invest in 

advanced technologies to defend against evolving 

threats. 

2. Zero Trust Security Model  

In response to the changing threat landscape, one 

of the most significant trends in cybersecurity is 

the adoption of the Zero Trust security model. 

Unlike traditional security approaches that rely 

on perimeter defenses, Zero Trust operates under 

the principle that no entity—whether inside or 

outside the network—is inherently trustworthy. 

This model emphasizes continuous verification 

of user identities, device integrity, and access 

permissions, thereby minimizing the risk of 

unauthorized access and data breaches. By 

adopting a Zero Trust approach, organizations 

can better secure their networks against 

sophisticated threats, as every request for access 

is treated as though it originates from an 

untrusted source, requiring thorough verification 

before granting permissions. 

III. Understanding Deepfake Technology 

1. What are Deepfakes?:  

Deepfake technology utilizes advanced machine 

learning techniques, particularly generative 

adversarial networks (GANs), to create realistic 

audio and visual content that can manipulate reality. 

By training algorithms on extensive datasets, 

deepfakes can swap faces, alter voices, and fabricate 

entire scenes, resulting in media that appears 

genuine yet is entirely fabricated. The implications 

of deepfake technology extend beyond 

entertainment, as its potential for misuse raises 

significant ethical and security concerns 

2. Application of Deepfake Technology : 

Deepfake technology has found applications 

across various fields, ranging from entertainment 

to education and beyond. In film industry, for 

example, filmmakers use deepfake technology to 

enhance special effects, allowing for greater 

creative flexibility in storytelling. Additionally, 

deepfakes can be employed in virtual reality 

environments to create immersive training 

simulations, providing learners with realistic 

scenarios to practice their skills safely.   

3. How to identify Deepfake Images:  

3.1 Blurring or Artifacts: Deepfake videos 

often show slight blurring or distortion around the 

face, especially near the edges where the fake face 

is blended with the original. 

3.2 Unnatural Eye Movements: The eyes in 

deepfakes may blink awkwardly or not at all, as 

early deepfake algorithms struggled with eye 

movements. 

3.3 Mismatched Lighting: In many deepfakes, 

the lighting on the face may not match the rest of 

the scene, with inconsistent shadows or highlights 

 

 

Fig 3.1. Difference between real and deepfake Image 

 

IV. Our proposed Technology - Sniffer  

 

4.1 Overview 

Sniffer is designed as a forensic verification 

infrastructure rather than a simple detection tool. 
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The system enables structured registration of 

original media, comparison of suspected content, 

and generation of legally structured verification 

reports. It focuses on evidence integrity, lifecycle 

management, and tamper localization 

The architecture consists of: 

i. Image Registration Module 

ii. Verification & Similarity Engine 

iii. Tamper Localization Engine 

iv. Severity Scoring Model 

v. Case Lifecycle Management 

vi. Chain-of-Custody Logging 

vii. Evidence Report Generation. 

4.2 Image Hashing for Digital Integrity 

Sniffer uses SHA-256 cryptographic hashing to 

generate a unique fingerprint for every registered 

image. Any modification, even at a single pixel 

level, results in a completely different hash value 

This ensures: 

i. Detection of direct file alteration 

ii. Integrity verification 

iii. Cryptographic evidence traceability 

Hash values are stored securely within the case 

record to ensure authenticity validation. 

4.3 Similarity-Based Tamper Detection 

In addition to cryptographic hashing, Sniffer 

performs structural similarity analysis between: 

i. Registered Original Image 

ii. Suspected Manipulated Image 

 

 

The verification pipeline includes: 

1. Feature Extraction 

2. Structural Similarity Index (SSIM) 

computation 

3. Pixel-level difference mapping 

4. Region segmentation for anomaly localization 

If divergence exceeds threshold values, the 

system: 

• Flags manipulated regions 

• Generates a tamper localization map 

• Assigns a severity score 

This enables detection of: 

• Face swaps 

• Region blending 

• Synthetic overlays 

• Background manipulation 

 

4.4 Severity Rating System 

 

Sniffer categorizes manipulation intensity using a 

structured severity scale: 

i. 1-3 (Low Severity): Minor modifications 

(brightness adjustments, cropping). 

 
ii. 4-7 (Medium Severity): Moderate 

alterations (face blending, background 

modifications). 

 
iii. 8-10 (High Severity): Major 

manipulations (deepfake replacements, 

synthetic elements). 

 

4.5  Case Lifecycle & Forensic Integrity 

Each verification is treated as a structured 

forensic case with defined states: 

• RECEIVED 

• PROCESSING 

• COMPLETED 

• FAILED 

Once analysis is completed, the case is locked to 

preserve integrity. 

Post-lock, evidence fields cannot be modified. 

4.6 Chain of Custody Logging 

To ensure accountability, Sniffer maintains an 
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immutable event log including: 

i. IMAGE_UPLOADED 

ii. ANALYSIS_STARTED 

iii. ANALYSIS_COMPLETED 

iv. REPORT_GENERATED 

v. CASE_LOCKED 

Each event includes timestamp and metadata, 

forming a traceable audit trail suitable for 

investigative workflows. 

4.7 Forensic Report Generation 

Sniffer generates structured PDF reports 

containing: 

• Case ID 

• Upload timestamp 

• SHA-256 hash 

• Image metadata (dimensions, EXIF 

presence) 

• Severity score 

• Classification 

• Chain of custody log 

• Legal disclaimer 

This allows the report to be attached to formal 

complaints or investigative submissions. 

V. How deep faked Content is Undetected? 

Detecting deepfakes is increasingly challenging due 

to the advanced technology used to create them. 

Deepfake generation tools, like Generative 

Adversarial Networks (GANs), produce highly 

realistic content that mimics minute details, making 

it difficult for detection systems to identify anamoly. 

Current machine learning models, though widely 

used, lack the accuracy to reliably spot deepfakes due 

to limitations like incomplete datasets and the 

immense time and resources required for training. As 

deepfake creation tools evolve rapidly, traditional 

detection models struggle to keep up, often failing to 

generalize across new and varied deepfakes. 

VI. Prototype Results and System Evaluation 

The current implementation of Sniffer 

demonstrates functional verification capabilities 

across the following metrics 

i. Integrity Verification 

Cryptographic hash mismatch detection 

reliably identifies direct file alterations. 

ii. Structural Similarity Detection 

Similarity-based comparison successfully 

highlights modified regions between 

registered and suspected images. 

iii. Processing Performance 

The verification pipeline processes images 

within 2–5 seconds under prototype testing 

conditions. 

iv.  Evidence Report Generation 

Forensic reports are generated instantly upon 

case completion, providing structured 

documentation suitable for investigative use. 

 

VII. Challenges and Limitations 

I. Computational Complexity: 

Blockchain Similarity analysis and pixel-level 

comparison require processing resources, 

particularly for high-resolution images. 

Optimization techniques are required for large-

scale deployment. expenses. 

II. Adversarial Manipulation: 

Advanced attackers may attempt minimal 

perturbations or noise injection techniques to 

evade similarity thresholds. Continuous model 

refinement is necessary. 

III. Dataset Generalization 



6 
 

Deepfake detection models may struggle when 

exposed to unseen manipulation techniques. 

Regular retraining and validation against updated 

datasets is essential.. 

 

VIII.  Future Enhancements 

 
i. Image Video Deepfake Detection 

Expanding Sniffer AI’s capabilities to 

detect video manipulations using frame 

hashing and AI-driven analysis. 

 

ii. AI-Enhanced Hash Verification 

Integrating deep learning for pattern 

recognition. Detecting manipulated areas 

within an image. 

 

iii. Integration with Law Enforcement 

Assisting forensic investigators in verifying 

digital evidence. 

 

IX. Ethical and Legal Considerations 

• Data Privacy Concerns 

Images are not stored—only hashes are kept 

for security. 

Ensures user privacy compliance (GDPR, 

CCPA). 

• Preventing Misuse 

Blockchain preventsunauthorized 

modifications, but ethical use must be monitored.. 

X. Conclusion 

The rapid evolution of deepfake technologies 

demands a shift from purely detection-based 

systems to structured forensic verification 

infrastructures. Sniffer presents a practical 

framework for deepfake integrity validation 

through cryptographic hashing, structural 

similarity analysis, tamper localization, lifecycle 

control, and chain-of-custody logging. 

By combining AI-assisted detection with 

evidence-grade documentation and integrity 

preservation mechanisms, Sniffer bridges the gap 

between digital media analysis and investigative 

application. Future work includes large-scale 

benchmarking, video deepfake detection 

expansion, and institutional deployment pilots. 

XI. References 

1. P. Agrawal S. Johnson, L. Smith, and M. 

Patel, "A Survey of Machine Learning 

Techniques in Intrusion Detection Systems," 

IEEE Xplore. [Online]. Available: 

https://ieeexplore.ieee.org/document/858901

2. Accessed: Oct. 10, 2023. 

2. A. Gupta, B. Verma, and T. Sharma, 

"Blockchain Applications in Cybersecurity: 

A Comprehensive Review," IEEE Xplore. 

[Online]. Available: 

https://ieeexplore.ieee.org/document/914547

2. Accessed: Jun. 21, 2024. 

3. Y. Kim, J. Park, and D. Choi, "Deep Learning 

Approaches for Anomaly Detection in 

Network Traffic," IEEE Xplore. [Online]. 

Available: 

https://ieeexplore.ieee.org/document/948111

5. Accessed: Aug. 11, 2023 

4. C. Williams and H. Martinez, "Cyber Threat 

Intelligence: Enhancing Detection and 

Response," ACM Digital Library. [Online]. 

Available: 

https://dl.acm.org/doi/10.1145/1234567. 

Accessed: Jan. 5, 2024. 

5. M. Anderson, R. Thompson, and E. Brown, 

"The Impact of AI on Cybersecurity 

Defenses," Journal of Cybersecurity 

Research, vol. 12, no. 3, pp. 45-67, 2023. 

6. T. Nakamura and S. Lee, "Zero Trust 

Security Model: Principles and 

Implementation Challenges," International 

Journal of Cybersecurity, vol. 9, no. 2, pp. 

112-130, 2023. 

https://ieeexplore.ieee.org/document/8589012
https://ieeexplore.ieee.org/document/8589012
https://ieeexplore.ieee.org/document/9145472
https://ieeexplore.ieee.org/document/9145472
https://ieeexplore.ieee.org/document/9481115
https://ieeexplore.ieee.org/document/9481115


7 
 

7. J. Roberts, K. Zhao, and L. Fernandez, 

"Deepfake Detection Using Neural 

Networks: A Comparative Analysis," IEEE 

Transactions on Information Security, vol. 

15, no. 4, pp. 87-102, 2024. 

8. D. Patel, "Ethical and Legal Considerations 

in Cybersecurity Policies," Cyber Law 

Review, vol. 18, no. 1, pp. 22-38, 2024. 

 

 


